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Abstract

In this work we repo-t on our experiences running OpenMP programs on a commodity cluster
of PCs running a softwire distributed shared memory (DSM) system. We describe our test en-
vironment and report on the performance of a subset of the NAS Parallel Benchmarks that have
been automaticaly parallzlized for OpenMP. We compare the performance of the OpenMP imple-
mentations with that of thewr message passing counterparts and discuss performance differences.

1 Introduction

Computer Architectures using clusters of PCs with commodity networking have become a low cost
alternative for high end scientific computing. Currently message passing is the dominating program-
ming mode! for such cluster:. The development of a parallel program based on message passing adds
a new level of complexity tu the software engineering process since not only computation, but also
the explicit movement of data between the processes must be specified.

Shared memory parallel processors (SMP) provide a user friendlier programming model. The use
of globally addressable memory allows users to exploit parallelism while avoiding the difficulties of
explicit data distribution on »arallel machines. Parallelism is commonly achieved by multi-threading
the execution of loops. Compiler directives to support multithreaded execution of loops are supported
on most shared memory parallel platforms. In addition, many compilers provide an automatic paral-
lelization feature taking all tl e burden of code analysis off the user. Efficiency of compiler parallelized
code is often limited, since : thorough dependence analysis is not possible without user information.
Alternatively, there are para lelization support tools available which take the tedious work of depen-
dence analysis and generation of directives off the user but allow user guidance for critical parts of the
code. An example of such a ool is CAPO [10].

While shared memory a-chitectures provide a convenient programming model for the user, their
drawback is that they are expensive and the scalability of the code may be limited due to poor data
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Jocality and possibly large s/nchronization overhead. During recent years there have been consider-
able efforts to develop system software to support DSM (Distributed Shared Memory) programming
which enables the user to erploy the convenient shared memory programming model on a network
of processors, thereby maintaining the ease of use while maintaining the low cost of hardware. Ex-
amples of such systems are TreadMarks [2] and SCASH [13]. These systems allow the support of
OpenMP parallelization on -lusters of processors, thereby removing the major impediment to their
usage which is the high effort to develop a message passing version from a sequential program. We
have installed publicly avail.ible DSM software on a commodity cluster of PCs and tested its perfor-
mance on a set of benchmark kernels. The paper seeks to address the issue of evaluating the efficiency
of DSM without explicit hardware support. The rest of the paper is structured as follows: In section 2
we discuss the message pas:ing and the shared address space programming models. In section 3 we
describe the hardware platfo m and system software of our test environment. In section 4 we describe
our evaluation strategy and discuss the performance of the individual benchmark kernels. In section 5
we discuss some of the prob ems we encountered. In section 6 we briefly examine some related work
and in section 7 we summar;ze our conclusions and discuss future work.

2 Programming Models

Currently message passing ind shared address space are the two leading programming models for
clusters of SMPs.

2.1 Message Passing

Message passing is a well understood programming paradigm. The computational work and the as-
sociated data are distributed between a number of processes. If a process needs to access data located
in the memory of another jrocess, it has to be communicated via the exchange of messages. The
data transfer requires cooperative operations to be performed by each process, that is, every send
must have a matching receive. The regular message passing communication achieves two effects:
communication of data fron: sender to receiver and synchronization of sender with receiver.

MPI (Message Passing Interface) [12] is a widely accepted standard for writing message passing
programs. It is a standard programming interface for the construction of a portable, parallel appli-
cation in Fortran or in C/C ++, which is commonly used when the application can be decomposed
into a fixed number of proccsses operating in a fixed topology (for example, a pipeline, grid, or tree).
MPI provides the user with a programming model where processes communicate by calling library
routines to send and receive messages. Pairs of processes can perform point-to-point communication
to exchange messages. For increased convenience and performance a group of processes can also
call collective communicatin routines to implement global operations such as broadcasting values
or calculating global sums. Gilobal synchronization can be implemented by calls to barrier routines.
Asynchronous communication is supported by providing calls for probing and waiting for certain
messages. In MPI-1, all coinmunication operations require the sending as well as the receiving side
to issue calls to the message passing library.

2.2 Shared Address Space

Parallel programming on a shared memory machine can take advantage of the globally shared address
space. Compilers for sharcd memory architectures usually support multi-threaded execution of a
program. Loop level parallclism can be exploited by using compiler directives such as those defined



in the OpenMP standard [14]. Multiple execution threads are automatically created for performing
the work in parallel. Data transfer between threads is done by direct memory references. OpenMP
provides a fork/join execution model in which a program begins execution as a single process or
thread. This thread executes sequentially until a PARALLEL construct is found. At this time, the
thread creates a team of thre 1ds and it becomes its master thread. All threads execute the statements
Jexically enclosed by the parallel construct. Work-sharing constructs (DO, SECTIONS and SINGLE)
are provided to divide the execution of the enclosed code region among the members of a team. All
threads are independent and may synchronize at the end of each work-sharing construct or at specific
points either implicitly or explicitly (specified by the BARRIER directive). Exclusive execution mode
is also possible through the cefinition of CRITICAL regions.

This approach provides : relatively easy way to develop parallel programs but has disadvantages.
It is often difficult to achieve scalability of the code for a large number of processors due to a lack of
data locality and excessive s:nchronization costs.

3 Hardware Platform and Software Description

Our test environment consi:ts of a cluster of commodity PCs at the High Performance Computing
Center of the University of Stuttgart (HLRS). In the following we give some details about hardware
and system software.

3.1 Platform descripti::n

We have used a cluster at HLRS consisting of 8 NEC 120Ed server nodes as the test platform. The
nodes are dual processor systems with two 1 GHz Pentium III and 2 GB of main memory. Each
node is equipped with a Myrinet 2000 NIC in a fast 64 bit / 66 MHz PCI slot. The nodes are based
on the ServerSet III HE chipset and have a good communication performance to the Myrinet cards.
The bandwidth from memary to the card is 409 MB/s for read operations and 480 MB/s for write
operations. These data have been acquired with the program ’gm_debug’ provided by Myricom. A
collection of data for other motherboards and chipsets can be found at [1]. For our evaluation we used
only one CPU per node.

In order to compare the performance of SCASH with a true shared memory system, we used a
16-way NEC AzusA. The AzusA is a shared memory system with IA-64 processors. Both systems,
the distributed memory clu: ter and the shared memory AzusA, were running Linux in its 2.4 ver-
sion. This reduces effects due to different memory managments of different operating systems on
the distributed and the shar>d memory architecture. The performance impact of different memory
mangement systems is discussed in In [5].

We did not have a four cr eight processor IA-32 system available for the tests.

3.2 SCore

SCore is a parallel progran.ming environment for workstations and PC clusters, developed by the
Real World Computing Part ership (RWCP). The project has now been transferred to the PC Cluster
Consortium. Amongst othe - features, SCore provides its own communication layer called PM [19,
20]. It aims at providing a 1n:form interface to different communication devices like Fast Ethernet,
Gigabit Ethernet or Myrinet

SCore also supports different parallel programming paradigms like message passing or shared
memory. On the message pi-ssing side there is a MPI-implementation based on MPICH with an addi-



tional device specifically deigned for the PM layer. Shared memory is supported in two ways. The
PM layer has a shared men-ory device that is intended for SMP systems. It uses memory-mapped
shared segements for the coinmunication between processes on a true shared memory system. Addi-
tionally, the SCore architectiire has a software distributed shared memory system called SCASH [6],
that we employed to obtain the results of the tests we present in this paper.

3.3 SCASH

SCASH [6] is a page-based software distributed shared memory system. It is implemented as a user-
space runtime library which uses the PM layer for communicating pages between cluster nodes.

It employs an eager relese consistency mode] to ensure the consistency of shared memory on a
per-page basis. This means that at memory synchronisation points only modified parts of memory are
updated, which usually requ res exchange of data between nodes.

The home node of a pag : is the node that keeps the latest data of the page. If other nodes change
the data within a page it must be updated on the home node. To reduce memory transfer, SCASH also
provides the possibility to chiange the home node of a page. It is possible to use two page consistency
protocols, an invalidate and wn update protocol, which can be chosen dynamically.

To reduce memory transier between nodes, the nodes use cached copies of requested pages. Only
on write operations to the memory can these copies become inconsistent. The update protocol speci-
fies that all copies of a particular page be updated once one node changes its contents.

In the invalidate protocol, the home node of a page notifies all nodes which share that page when
a page has been altered and -ached copies of that page on other nodes become invalid.

3.4 Omni OpenMP

Omni OpenMP is a collection of programs and libraries that enable OpenMP for back-end compilers
that do not support it natively. The front-end to these compilers translates C or Fortran77 OpenMP
source texts into multi-threaded C with calls to a runtime library.

One of the main goals « f Omni OpenMP is portability, so the translation pass from an OpenMP
program to the target code it written in JAVA. The target code is — in turn — compiled by the back-end
C compiler on the target pletform. For the tests presented here we used the GNU C Compiler as the
backend compiler.

The Omni compiler suite can be configured to use several different underlying libraries. For
the thread system Solaris Threads or pthreads are supported, but there is also support for Stack-
Threads [18] developed by Real World Computing Project (RWCP). In addition to the support of
threads there is support for -cveral shared memory implementations, like UNIX shmem. In our tests
we used the support for the SCASH distributed shared memory system which has been described
above.

The Omni OpenMP coinpiler suite is also available for IA-64. For tests on the shared memory
Azusa system (see 3.1) we used the Omni compiler, too, again in order to minimize the influence of
different software. This wav we can attribute certain observations to either the DSM system or the
Omni OpenMP compiler.

4 Case studies

For our evaluation we selec ed a subset of the NAS Parallel Benchmarks [3]. They were designed to
compare the performance of parallel computers for computational fluid dynamics (CFD) applications.
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The full suite consists of five benchmark kernels and three simulated CFD applications. We selected
three of the five benchmark l.ernels for our study.

4.1 Evaluation Strategy

To evaluate the performance of our test environment we compare the timings of OpenMP implemen-
tations of the benchmark keinels to:

1. Timings of their message passing counterparts on the same system.

2. Timings obtained on a true shared memory system but with the same operating system and
therefore a comparabl> memory managment system.

The first OpenMP versus M 1 comparison will give us some means to determine how well the DSM
software handles memory coherency and synchronization. In the MPI implementation access to re-
mote data is achieved by calls to the message passing library. The user has contro] over data locality
and decides when and how much data to communicate. This provides the opportunity to minimize
communication during program execution. Another aspect of the message passing approach is that
data communication and sy 1chronization are integrated. The send and receive operations not only
exchange data, but also regulate the progress of the processes. In the OpenMP implementation the
locations of the data, the ainount of data to be communicated, and the synchronization among the
threads depends on the DSM system and the compiler. As explained in section 3, the DSM system de-
tects the necessity of communicating data when a page of memory is accessed that has been marked as
updated by another process. We will use the number of page requests as an indicator for the amount
of communication in the D5M system. Even in the case where a hand-optimized message passing
implementation outperform: the DSM system, the ease of application porting may compensate for a
certain loss of performance.

The comparison of Oper MP on a cluster versus OpenMP on a shared memory node gives us some
estimate of the speedup that can be expected from the OpenMP programming paradigm on a true
shared memory architecture Cwr test platforms are described in section 3. We use the Omni compiler
on both platforms.

The benchmarks come i1 different classes determined by the problem size. We ran only the small
problems of class S,W, and A, since we encountered some problems with the larger sizes which will
be discussed in section 5. Since our system is small, consisting of only 8 nodes, it is hazardous to
extrapolate the scalability studies to larger systems. However, running the very small benchmark
classes allows us to gain some insight into how the computation to communication ratio impacts the
performance.

Since the ease of applic: tion porting is an important factor in favor of the DSM system, we started
out with a sequential version of our benchmark kernels and used the automatic parallelization support
tool CAPO [10] to insert OpenMP directives, thereby minimizing the parallelization effort. CAPO
was developed at the NAS/. Ames Research Center. It takes as input a sequential Fortran program.
It then performs an extensi.¢ dependence analysis over statements, loop iterations, and subroutine
calls and generates Fortran :ode containing OpenMP directives. CAPO is based on the dependence
analysis module of the CAPTools [8] parallelization tool. Our starting point for the message pass-
ing version of the benchmark kernels was the NPB2.3 [4] release of the NAS Paralle]l benchmarks.
For the OpenMP implementations we started with an optimized serial implementation of the same
benchmarks as described i1 [9]. The structure of the serial code is kept very close to the message
passing code. Only slight imodifications were applied to the kernels considered in our study and we
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Figure 1: Speedup- for class A of the EP benchmark for OpenMP/DSM and MPI

will describe them in the sec ions below. A good description about how to use CAPO for the OpenMP
parallelization of the benchmurks is given in [10],

4.2 The EP benchmar}. kernel

EP stands for embarrassingly parallel. The kernel generates pairs of Gaussian random deviates ac-
cording to a specific schemc. As the name suggests, the iterations of the main loop can be executed
in parallel. Tool based Ope \MP parallelization of the kernel was possible without user interaction.
Once the data is distributed. the main loop which generates the Gaussian pairs and tallies the counts
does not require access to re note data except for several global sum reductions at the end. In the MPI
implementation the global snmis achieved by calls tompi_allreduce. The OpenMP implementa-
tion uses the OMP PARALI EL REDUCTION directive. The MPI implementation shows a very low
communication overhead, w hich is less than 1 % even for the smallest benchmark class on 8 nodes.
If m denotes the log2 of the number of complex pairs of uniform (0, 1) random numbers, then the
problem size of the benchm.irk classes under consideration is:
Class S: m=24
Class W: m=25
Class A: m=28
The OpenMP/DSM implementation shows a very low number of page requests to the DSM sys-
tem. As expected, the mess: ge passing as well as the OpenMP/DSM implementation show an almost
linear speedup for all benchmark classes. For 8 nodes the OpenMP/DSM performance ranges within
97 % to 102% of that of MPI, depending on the benchmarks class. As an example we show the

speedup for class for class /., in fig. 4.2.

4.3 The CG benchmark kernel

The CG benchmarks kerne uses a conjugate gradient method to compute an approximation to the
smailest eigenvalue of a lar e, sparse, unstructured matrix. The kernel is useful for testing unstruc-
tured grid computations anl communications since the underlying matrix has randomly generated
locations of entries. Parall-lization for message passing and directive based versions occur on the



same level within the conjug ate gradient algorithm. The basic parallel operations are: sparse matrix
vector multiply, AXPY operations, and sum reductions. The code was parallelized using CAPO with-
out any user interaction. If na denotes the number of rows of the sparse matrix and nz the number of
non-zero elements per row, (1¢n the problem size of the benchmark classes under consideration are:
Class S: na = 1400 nz="7
Class W:  na=7000 nz=3_§

Class A: na=14000 nz=11
In fig. 2 we show the spe zdup for the three benchmark classes. For class A, the MPI as well as the

OpenMP/DSM and OpenM ”/SMP implementations show reasonable speedup. The OpenMP/SMP
version shows occasional superlinear speedup due to cache effects. For 8 nodes, the OpenMP/DSM
efficiency reaches about 75¢  of that of MPI. The MPI version maintains this speedup for the smaller
problem sizes but the performance of the OpenMP/DSM version decreases drastically. For 8 nodes
and class W the OpenMP/D:sM efficiency is only 35% and for class S is goes down to 6% yielding a
speedup of less than 1.

The class S problem si:e is far too small to serve as a realistic example. However, we have
a closer look at the perfromance differences for this class to get an idea about potential scalability
issues related to the DSM system.

Our first observation is that the Omni compiler and its runtime library introduce additonal over-
head which decreases performance even on a shared memory system. This is demonstrated in fig.2d,
where we compare the speedup of class S for the Omni compiler with that of the Intel compiler and
Guide, which is part of the k AP/Pro ToolSet of Kuck & Associates/Intel.

To analyse the DSM peifurmance we examine the three major time consuming loops within one
conjugate gradient iteration These loops are the same in the MPI and the OpenMP/DSM implemen-
tation. They implement a sparse matrix-vector multiplication (MVM), a dot-product (DOT) , and a
loop combining two AXPY perations and a dot-product. Code examples are shown in fig. 3

The sparse matrix A is stored in packed format such that indirect addressing is required for matrix
operations. The sparse matr:x-vector multiply is a double-nested loop requiring indirect addressing.
For OpenMP, it is paralleliz:d by using an OMP PARALLEL DO on the outer loop across the rows
of the sparse matrix. The dot-product as well as the AXPY’s combined with a dot-product are single
loop nests, using the OpenMP REDUCTION clause to build the global sum.

The speedups for class 5 for the three major loops are shown in fig. 4. Both implementations
suffer from a large commui ication to computation ratio for the single nested loops. However, the
effect is far more severe for :he DSM system. In the MPI version the communication required for the
global reduction operations ‘s highly optimized by using non-blocking send and receive to minimize
synchronization overhead. ~he set of processes that communicate with each other is determined in
advance. This allows the ruduction of the amount of communication within the iteration loop. In
the OpenMP/DSM implementation, processing the OpenMP REDUCTION clause by the DSM system
generates a large communic ttion overhead which is indicated by high number of page requests and
manifestes itself by poor sjeedup as can be seen in fig. 4. The parallel efficiency is bad for the
matrix-vector-multiply and « ixastrous for the dot-product and AXPY operations.

We conclude that the performance loss for the small size problems is due to:

1. additonal overhead du: to the Omni compiler,

2. A high communictation to computation ratio which results from short loops and global com-
muincation operations.

For the more realistic be wchmark class A the performance of the DSM system is acceptable.
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Figure 2: Speedups for diffcrent classes of the CG benchmarks. In (a) the speedup for OpenMP/DSM
is shown for classes A, W a1d S. The MPI speedup for the same classes is given in (b). The speedup
for a true shared memory sy-tem is presented in (c). (d) shows a comparison of the speedup for class S
for different compilers on a shared memory platform. The Guide and the Intel compiler both support
OpenMP natively.



Matrix-Vector Product:

1$Somp parallel do default(shared) private(j,k, sum)
do j=1,laszrow-firstrow+l

sum = 0.d0
do k=rowstr(j),rowstr(j+1)-1
sum = sum + a(k)*p(colidx(k))

enddo
g{j) = sum

enddo

Dot-Product
d = 0.0d0

1$omp parallel do c=fault({shared) private(j) reduction(+:4)
do =1, lastcol-firstcol+l
d =d -+ p(3)*ad)
enddo

AXPY/Dot-Product Combination
rho = 0.0¢0

!Somp parallel do ¢ e7ault (shared) private(j) reduction(+:rho)
do j=1, lestcol-firstcol+l

z(j) = z(j) + alpha*p(3])

r(j) = r(j) - alpha*g(j)

rho = 1710 + r(j)*r(j)
enddo

Figure 3: Code examples fc r inultiplication, a dot-product, and a loop combining two AXPY opera-
tions and a dot-product
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Figure 4: Details of CG benc hmark’s class S. Speedups are shown for the matrix-vector multiplication
(MVM), for the dot-product (DOT) and AXPY +dot-product (AXPY+DOT). (a) results for DSM, (b)

results for MPI

4.4 The FT kernel ben:hmark

The FT benchmark is the computational kernel of a spectral method based on a 3-D Fast Fourier
Transform (FFT). During the setup phase the 3D array is filled with random numbers. Unlike in the
other benchmarks, the setuj: phase is part of the timed code. The serial implementation of FT code
was changed to pre-calculat > the values for the loop that initializes each data plane. This enables the
directive based parallelization of the loop. The main loop in FT could not be parallelized completely
automatically. Due to the complicated structure of the Joop CAPO had to assume data dependencies
that prevented parallelization. In contrast to a compiler CAPO allows interactive user guidance during
the parallelization process. Parallelization could be achieved by privatizing certain arrays through the
CAPO user interface.

If nx, ny, and nz denote the number of gridpoints in each of the spatial dimensisons.the sizes of
the benchmark classes unde- consideration are given as:

Class S: nx=64, nv=64, nz=064
Class W: nx=128, uny=128, nz=32
Class A: nx=256, ny=256, nz=128

The speedup for OpenMP/DSM, MPI, and OpenMP/SMP versions for our three benchmark classes
is shown in fig. 5. For 8 nodes the OpenMP/DSM implementation achieves about 70% of the MPI
speedup, for class W 65% und for class S 50%. The OpenMP/DSM speedup is limited to about 4 out
of 8 processes compared to 6 out of & for the MPI implementation. To understand the performance
difference we examine the lifferent steps of the FT benchmarks in detail. In both implementations,
the 3-D FFT is accomplishcd by performing a 1-D FFT in each of the three spatial dimensions. For
each spatial dimension the three-dimensional array is copied into a one-dimensional array, the FFT is
performed on the one-dime 10nal array, and the result is copied back. A code fragment for the first
dimension is shown fig. 6.

The OpenMP paralleliz tion is achieved by inserting an OMP PARALLEL DO on the outermost
Joop. This results in a dist ibution of the data in dimension of K corresponding to the z-direction.
The speedup for the individaal three spatial dimensions for the OpenMP implementation on the class
A benchmark is shown in tig 7. While the FFT in x and y dimension reach a speedup of 6 out of
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Figure 5: Comparison of MI'l and OpenMP/DSM speedups for classes A, W and S of the FT bench-
mark. (a) Speedup for Open VIP/DSM, (b) MPI Speedup, (c) Speedup on the SMP system

do k = 1, n3

do j = L, n2
do i = 1, nl
wii) = u{i,j, k)
enddi >

call fft (w,...)

do 1 = 1, d(1)
vii,j, k) = w(i)
endd»
enddo
enddo

Figur 6: Code fragment for the first dimension of FFT
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8, the speedup in z-dimensin is only 2 out of 8. The performance loss in X and Y dimension is
mostly due to communication caused by writing to the shared array U which is indicated by page
requests within this loop. Logically there is no communication required for this loop, since only the
local part of the array is acczssed. The performance decrease for the z-dimension is due to the fact
that here the outermost loof of the loop nest from fig. 6 runs in J and not in K dimension. Since
the data was distributed in K dimension, parallel execution of the loop requires access to remote data
and causes a large number of page requests. The MPI implementation performs a transpose of the
three-dimensional array in z dimension, which is achieved by a call to MPT_ALLTOALL. This causes
some decrease in performance, but not as severe as in the DSM system.

a 4
3
3
QO
3
®
:
q
=
S
8 I
g8 0
0 "
1 2 3 4

# threads
Figure 7: Spee lup for different directions of the FFT on the DSM system

5 Problems encountered

The installation of SCore, SCASH and Omni OpenMP was rather straight forward. For the basic
SCore installation we tried to use aggressive compiler optimizations whenever possible and we went
through an iterative process o find a stable configuration in terms of compiler settings. The SCASH
and Omni OpenMP configur itions were based on the one found for the basic SCore system. We were
able to run all tests and examples delivered with either SCASH or the Omni OpenMP compiler suite
successfully.

We ran into problems when trying to run the three kernel benchmarks EP, CG, and FT for larger
problem sizes such as they ure given class B or C. We also could not run any of the simulated CFD
applications BT, SP, and LU that are part of the benchmark suite, even for the small problem size given
in class A. The problems we encountered were due to the fact that SCASH was not able to allocate
enough of virtual memory. The SCASH system itself uses a large amount of memory for its own
memory managment on top nt the one provided by the operating sysstem. To improve data exchange
performance (i.e. bandwidth and latency) SCASH specifically allocates pin-down memory [21]. For
larger benchmark classes it s ;ems that there is not enough pinnable memory available.

Another severe restricticn is the 32 bit address-space of the IA32 architecture. With 32 bit ad-
dresses the address-space is restricted to at most 232 addresses. Usually the memory managment of

12



operating systems like Linux or Windows I allows a process to use only part of this address-space
for its private data. The operating system uses the rest to mirror some internal data structures into the
process’ virtual address-space. Under Linux a process can only use 2 GB of the theoretical maximum
of 4 GB for its private data.

Without additional effor:, the kernel itself would suffer from this 4 GB barrier. To enable the use
of more main memory, on 1432 Linux uses the PAE capabilities of modern processors to access up to
64 GB. This is achieved by 1aving a three stage page address translation mechanism. But even with
this system, only the kernel can handle more than 4 GB. A single process is still restricted to 2 GB of
private memory.

A software distributed shared memory system like SCASH that runs in user-mode and uses a 32
bit global address-space will therefore be restricted to a maximum of 4 GB global shared memory.

6 Related Work

Another system supporting 11e OpenMP paradigm on distributed memory systems is TreadMarks [2].
Comparisons of the TreadMarks systems with message passing programming are given in [7] and
[11]. Other systems that sup»ort software DSM programming are Cashmere [17) and SMP-Shasta [?]
There are a number of papers reporting on comparisons of different programming paradigms. As
an example we name [15] and [16] where message passing and shared memory programming are
compared on shared memor: architectures.

7 Conclusions and Future Work

We have measured the perfc rmance of OpenMP/DSM implementations of three of the NAS Parallel
Benchmarks on a commodi'y cluster of PCs, and we compared the speedup to corresponding MPI
implementations of the sam: algorithms. The difference in performance depends on the structure of
the application and the prob em size. For the Jargest problem sizes under consideration the observed
OpenMP/DSM speedups raage between 100% and 70% of the MPI speedup for all benchmarks.
Only in cases whith an extrc mely high communication to computation ratio does the OpenMP/DSM
speedup go down to less thi n 10% of MPI. This occurs in the smallest class of the CG benchmark,
where AXPY and dot-product operations for short vector lengths are being parallelized. We have
noticed that in this extreme :ase part of the performance decrease was due to compiler defficiencies
which also show on a sharcd memory system. The memory problems described in section 5 are
implementation dependent and we expect them to be resolved in commercial software. Usage of 64
bit system sofwtare and kernel enhancements to support DSM on a system level will improve the
general usability of DSM sy items.

All in all we are encouraged by the results we obtained considering the fact that we were using
public domain software. Tl.e DSM system allowed us to take exploit parallelism over all nodes of
the cluster by using automatically parallelized code based on OpenMP. We find the performance dif-
ferences when compared with hand-optimized MPI code acceptable when we take into account the
extremely short developeme 1t time of the parallel code. Our future plan is to run full size aplications
in our testbed environment.

!'Windows is a registered tradeinark of Microsoft Corp.
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Distributed vs Shared Memory Parallelism

=

s Distributed Memory
» Commodity hardware
» Commodity network
» Low cost alternative
for high end scientific
computing
Currently difficult to
program:
» Data distribution

» Message Passing
required

v

e Shared Memory

» Globally shared
address space
Parallelization via
compiler directives
Incremental
parallelization possible
High cost of hardware
Limited scalability

v

v

v v

Djst}ributed Shared Memoxy (I?SIYI) B

e Software for distributed ——— —
memory architecture Low i a1

o Enables shared memory |uistributea rmoryl
programming

Easc of programming]
{shared memory)

¢ Combines T
e Examples are: L
» TreadMarks
» Scash

P'erformance?

B

e PC Cluster at HLRS
¢ 8 NEC 120Ed server nodes.
s Each Node:
» Dual processor
» 1 GHz Pentium III
» 2 GB main memory
s Network:
» Myrinet 2000 NIC
» 64 bit/66 MHz PCI slot
e Bandwidth:
» 409 MB/s read
» 480 MB/s write

Test Enviro‘n;ypgt_xt: Hardware




Test Environment: System Software (1)

ftiiis v

e SCore: PC Cluster Consortiam, Japan

Applications (¢.g. NAS Paralle] Benchni uks)

User Level

Kemel Level

NIC Level

Test Environment System Software (2)

e ks i G S ——

e SCash:
» PC Cluster Consortium
» Software Distributed Shared Memory System.
» Based on a high bandwidth communication library
(PM)}
» Maintains page based memory consistency
» Multiple writer release consistency model:

« Modified pages are transferred at synchronization points
{e.g.bamers)

Test Environment System Software (3)

s sz T PR g e vt

e Omni Compiler:
» OpenMP compiler with C . .nd Fortran front
end for SMP
» SCash based Omni Comp-ler

B

_Case Studies

* Three kernel benchmarks from the NAS Parallel
Benchmark suite:
» Message passing implementation based on MPI
(NPB2.3)
» Autornatically parallelized OpenMP code using the
CAPO parallelization tool
e Evaluation strategy:
» Run different problem sizes
» Compare speedup to corTesponding message passing
implementations
» Compare speedup 1o a true SMP system:
+ Same operating system
» Omni compiler, but not using SCASH
» Take into account development time for parallel code
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The EP Benchmark

¢ Embarrassing Parallel:
» Generation of random
numbers
» Loop iterations parallel.
» Global sum reduction at
the end
e MPI impiementation:
» Global sum built via
MPI_ALLREDUCE
» Low communication
overhead (< 1%)
¢ OpenMP/DSM: -
» Little memory access.
» OMP DO PARALLEL
» OMP DO REDUCTION

EP Class A

Linear speed: p for MPI and OpenMP/DSM
N»n surprises

LA s § "z

The CG Benchmark

Conjugate gradient method to solve an
eigenvalue problem
Stresses irregular data access

¢ Major loops:

[

» Sparse Matrix-Vector-Multiply

» Dot-Product

» AXPY Operations
Same major loops in MPI and OpenMP
implementation
Automatic parallelization without user
interaction

s e

CG Benchmark Results (1}

s OpenMP/DSM efficiency
about 75% of that of MPI
for Class A

¢ OpenMP/DSM performance
bad for Class S:

» Inefficiencies in the Omni
Compiler
» Large Communication
overhead:
« Short loops with few
caleulations
+ Global reduction operations

b
»
BN

CG Benchmark Results (2)
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‘The FT Benchmark

o Kernel of spectral ﬁlethod based on 3D Fast
Fourier Transform (FFT)

e 3D FFT achieved bya 1D FFT inx, y, and z
direction

e OpenMP parallelization requ:red some user
interaction

FT Benchmark Results(l)

¢ OpenMP/DSM efficiency ot
about 70% of MPI
e MPI Parallelization:
» MPI_ALLTOALL to
achieve transpose of
data L
e OpenMP Parallelization:  ACERT :
» OMP DO PARALLEL on D e
outer loop
» Extra communication
introduced by DSM
system (false page
sharing)
Remote data access
required for FFT in z-
dimension
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v

FT Benchmark Results (2)

OpePMP/DSM £FT Components Gis « A

" F X Speaarin |
ETY Somsa |
o FTZSpesdim

Spassup

BN

Problems Epcoungpggg o

e Limited Pin-able memory available
e Private memory limited to 2GB
e Need for:

» Enhanced kernel support

» 64 bit addressing mode




Conclusions: o Related Work:
e OpenMP/DSM delivered acceptable speedup e TreadMarks
if the communication/computation ratio is e Cashmere
not too high o SMP-Shasta

e OpenMP/DSM showed between 70% and
100% of MPI efficiency for benchmarks of
Class A

o Large cases could not be run due to memory
problems
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Future Work:
o ctoniatun

¢ Run full applications under DSM

e Try commercial DSM software once it
becomes available (I. E. KAI 'Pro Toolset
Network Edition)
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